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Abstract

One of the most difficult challenges for mobile robots
is to precisely localize the position of a vehicle. Such
a robot must constantly be aware of its location in or-
der to perform autonomous navigation, motion tracking,
and obstacle recognition and avoidance. For this pur-
pose, a reliable technique is vision-based odometry. This
report studies monocular visual odometry(VO). The stan-
dard pipeline for performing visual odometry includes fea-
ture extraction, camera calibration,local optimisation etc.
Thus some prior knowledge of system is required to re-
cover absolute trajectory. However,a RNN+CNN model
can be used to infer poses directly without this prior knowl-
edge. This report presents comparison between the conven-
tional method (geometry-based odometry) used for monoc-
ular visual odometry with an end-to-end trained RNN+CNN
model for trajectory estimation and verifies the viability of
the end-to-end model over traditional visual odometry sys-
tems.

1. Introduction
In mobile robot applications, precise vehicle localisation

is a major difficulty. To perform autonomous navigation, a
robot must continuously keep track of its location. As a re-
sult, researchers and engineers have created a variety of sen-
sors, techniques, and systems for mobile robot positioning,
including wheel odometry, laser/ultrasonic odometry, the
global position system (GPS), the global navigation satel-
lite system (GNSS), the inertial navigation system (INS),
and visual odometry (VO) [1]. Every method, however, has
flaws of its own like the commercial GPS estimates position
with errors in the order of meters. This error is considered
too large for precise applications that require accuracy in

centimeters, such as autonomous parking. Whereas with a
relative position inaccuracy of between 0.1-2%, VO is a less
expensive alternative odometry approach that is more accu-
rate than traditional methods like GPS, INS, wheel odome-
try, and sonar localization systems [2].

1.1. Background

Stereo VO can degenerate to the monocular situation
when the distance between the scene and the stereo cam-
era is substantially more than the stereo baseline, rendering
stereo vision useless.In monocular VO, the 3D structure and
relative motion are calculated from the 2D bearing informa-
tion. For the purpose of rejecting outliers, monocular VO
employs the feature tracking technique and random sample
consensus (RANSAC). Through the estimation of the 3D to
2D camera position, the new forthcoming camera pose was
calculated. With a little modification to the motion estima-
tion phase, the created technique, which consists of three
stages (feature detection, feature tracking, and motion esti-
mation), can be used with either monocular or stereo vision
systems. Each image frame’s corners are first extracted by
the algorithm, which then tracks the features it has found be-
tween frames. To properly track features from one image to
the next, a matching criterion is used.The motion estimation
phase is then carried out. A five-point posture algorithm is
used in the motion estimation phase of a monocular vision
system to determine the pose for each monitored feature.
The first and last photos taken are used to determine the
3D position of each feature that was detected. The estima-
tion of the camera’s 3D posture is then done using 3D point
data. In a stereo vision system, the stereo matching of the
features between the two images captured by each camera
yields the 3D position of each extracted feature.The features
from the ground plane are used in a hybrid technique that
combines feature- and appearance-based VO in a monocu-
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Figure 1. Sequences in KITTI Dataset

lar omnidirectional configuration. The translation and ab-
solute scale were estimated using these features by tracking
scale-invariant feature transform (SIFT) points. The spin of
the vehicle was calculated using an image appearance visual
compass. Because the appearance-based method is suscep-
tible to obstacles, the feature-based approach was also used
to identify its shortcomings.

1.2. The KITTI Dataset

The Odometry Benchmark dataset of colored images
created by the Karlsruhe Institute of Technology, Germany
was used for this project. This dataset is commonly referred
to as the KITTI Dataset. The odometry benchmark consists
of 22 stereo sequences, saved in loss less png format: We
provide 11 sequences (00-10) with ground truth trajectories
for training and 11 sequences (11-21) without ground truth
for evaluation. From all the test sequences, our evaluation
computes translational and rotational errors for the first set
of subsequences. The data sequences of all 4 cameras can
be seen in Figure 1.

1.3. Methodology

This section reviews earlier work on the monocular VO
and discusses various methods and how they differ from one
another. There are essentially two sorts of algorithms in
terms of the technique and framework adopted: geometry
based and learning based methods.

Methods Based on Geometry: Geometry-based ap-
proaches, which predominate in VO and are theoretically
grounded on geometric theory, use geometric constraints
taken from pictures to estimate motion. Since they are
derived from elegant and proven principles and have been
widely researched, most of state-of-the-art VO algorithms
come into this family. They can also be separated into di-
rect approaches and sparse feature based methods.

1) Sparse Feature Based Methods: After extracting
and matching (or tracking) salient feature points from a se-
ries of images, sparse feature-based algorithms use multi-
view geometry to determine motion. However, due to the
presence of outliers, disturbances, etc., all VO algorithms
suffer from drifts over time. Visual SLAM (simultaneous

localization and mapping) or SfM (structure from motion)
can be used to maintain a feature map for drift correction
together with posture estimation in order to alleviate this
issue. Examples include keyframe basis PTAM and ORB-
SLAM.

2) Direct Methods: The computational cost of fea-
ture extraction and matching for sparse feature-based ap-
proaches is high. More importantly, they ignore the wealth
of information included in the entire image and just use the
key characteristics. On the contraray, direct approaches can,
if photometric consistency is assumed, utilize every pixel in
a series of photos to estimate a pose. Recently, semi-direct
methods for the monocular VO have been devised that
achieve improved performance. Direct approaches are pro-
gressively becoming more popular since, in general, they
are more accurate than feature-based ones and can function
better in situations without textures.

Methods Based on Learning: Machine learning is used
in learning-based techniques, which are data-driven, to in-
fer VO from sensor measurements and train motion mod-
els without specifically referencing geometric theory. Using
optical flow, the regression techniques K Nearest Neighbor
(KNN), Gaussian Process (GP), and Support Vec- tor Ma-
chines (SVM) are trained for the monocular VO. Few stud-
ies on learning-based systems have been conducted, and no
one has yet directly dealt with raw RGB images.
Traditional machine learning methods have been shown to
be ineffective when dealing with huge or highly non-linear,
high-dimensional data, such as RGB images. DL, which au-
tomatically learns proper feature representation from large-
scale datasets, offers an alternate solution to the VO prob-
lem.

Deep Learning Based Methods: DL has achieved
promising results on some localisation related applications.
The features of CNNs, for instance, have been utilised for
appearance based place recognition. Unfortunately, there
is little work on VO or pose estimation. To our knowl-
edge, firstly realises deep learning based VO through syn-
chrony detection between image sequences and features.
After estimating depth from stereo images, the CNN pre-
dicts the discretized changes of direction and velocity by
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Figure 2. Model Architecture [2]

the softmax function. Although this work provides a feasi-
ble scheme for deep learning based stereo VO, it inherently
formulates the VO as a classification problem rather than
pose regression. Camera relocalization using a single image
is solved in by fine-tuning images of a specific scene with
CNNs. It suggests to label these images by SfM, which is
time-consuming and labour-intensive for large-scale scenar-
ios. Because a trained CNN model serves as an appearance
“map” of the scene, it needs to be re-trained or at least fine-
tuned for a new environment. This seriously hampers the
technique for widespread usage, which is also one of the
biggest difficulties when applying DL for VO. To overcome
this problem, the CNNs are provided with dense optical
flow instead of RGB images for motion estimation. Three
different architectures of CNNs are developed to learn ap-
propriate features for VO, achieving robust VO even with
blurred and under-exposured images. However, the pro-
posed CNNs require pre-processed dense optical flow as in-
put, which cannot benefit from the end-to-end learning and
may be inappropriate to real-time applications. Because the
CNNs are incapable of modelling sequential information,
none of the previous work considers image sequences or
videos for sequential learning. In this work, we tackle this
by leveraging the RNNs.

2. Experiments
In this section, we discuss the experimental results of

the monocular visual odometry and the proposed RNNs for
visual odometry on the well-known KITTI dataset. Since
most of existing monocular VO algorithms do not estimate
an absolute scale, their localisation results have to be man-
ually aligned with ground truth.

2.1. Training and Tests

The data set was split for training and testing purposes.
There were a total of 11 path sequences out of which we

Figure 3. Disparity map using the StereoBM method

trained the model on 7 of them and tested on 5.

Training sequences - 01,02,06,08,09,10,11
Validation sequences- 03,05
Testing sequences - 07,03,04,05
The sequences were decided based on the length of the
path. The one with relatively longer path was used a
training set and the rest as test.

The model was trained using NVIDIA CUDA for 100
epochs with a learning rate of 1e-3. Dropout and early
stopping techniques were introduced to prevent the models
from over fitting. In order to reduce both the training time
and data required to converge, the CNN is based on a
pre-trained FlowNet model.

2.2. Stereo Semi-Global Block Matching (SGBM)

We used OpenCV to apply stereo depth estimation and
multi-view geometry to attempt to track vehicle position
through a sequence.

We first compute the disparity map using the StereoBM
method. The StereoBM method is used to compute stereo
correspondence using the block matching algorithm.

The output from the StereoBM method is then compared
with the StereoSGBM method. In this method, the dispar-
ity of a pixel is calculated by considering a smaller block
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Figure 4. Disparity map using the StereoSGBM method

Figure 5. Feature Matching using SIFT Descriptors using the
StereoSGBM matcher

Figure 6. Visualizing the Lidar pointcloud

of pixels for ease of computation. Thus, the Semi-Global
Block Matching (SGBM) algorithm uses block-based cost
matching that is smoothed by path-wise information from
multiple directions.

This is then followed by finding the width of in order to
create a mask to prevent the feature detector from searching
insignificant areas for features on every frame. Next, we de-
tect and match features between two images using the SIFT
descriptor.The algorithm consists of:

1.Peak selection
2,Keypoint Localization
3.Orientation Assignment
4.Keypoint Descriptor and Keypoint Matching
Feature matching using StereoSGBM and StereoBM as

matchers are depicted in figures 5 and 6.
We then visualize the Lidar pointcloud using matplotlib.

2.3. CNN+RNN

The performance of the trained VO models is analysed
according to the KITTI VO/SLAM evaluation metrics, i.e.,
averaged Root Mean Square Error (RMSEs) of the transla-
tional and rotational errors for all subsequences of lengths
ranging from 100 to 800 meters and different speeds (the
range of speeds varies in different sequences).

parameters: epochs=100 batch size= 5 learning rate=
0.001

The model maps the roll, pitch and yaw of the vehicle
at every instance. This can be easily learnt to model by the

Figure 7. Feature Matching using SIFT Descriptors using the
StereoBM matcher

Figure 8. Predicted 3D trajectories of sequences 03 04 05 07

RNN in terms of orientation.
In Figure 8. we have mapped the translation and rotation

error of the model as it progresses through the epochs. The
errors decreases and plateaus towards the end.

3. Conclusion
We first implemented visual odometry using geometry-

based methods.Next, we developed a CNN+RNN model
to predict the same trajectory.The disadvantage of the
geometry-based visual odometry is that some prior knowl-
edge of system is required to recover absolute trajectory.
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Sequence 03

Sequence 04

Sequence 05

Sequence 07

Figure 9. Roll, pitch and yaw prediction

Figure 10. Translational and rotation error for sequence 06

However,a RNN+CNN model omits this and can be used to
predict poses directly. Both the methods perform compara-

bly well.
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