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Abstract—In this paper, we explore the use of optimal control
strategies to model the most efficient path for a racing car to
optimize its lap time around F1 circuits, focusing on Monza (Italy)
and Silverstone (United Kingdom) circuits. To achieve this, we
generate a track line and add track limit constraints, to create a
centre line to use as a reference. We then formulate a quadratic
cost to minimize track curvature and generate the optimal race
line, and use a DIRCOL-based trajectory optimization algorithm
to calculate the controls required to track the trajectory. Our
results demonstrate the effectiveness of the proposed optimal
control strategies in achieving faster lap times, and the potential
to improve racing car performance in F1 circuits. This work
contributes to the broader field of optimal control and trajectory
optimization in the context of high-performance motor-sports.

I. INTRODUCTION

High-performance racing has always been an exciting and
challenging field, where the goal is to achieve the fastest
possible lap time around the track. In Formula One (F1) racing,
drivers and engineers continuously search for ways to optimize
the performance of their cars and outpace their competitors.
One approach to improving lap times is to use optimal control
strategies, which aim to find the most efficient path a racing
car can take around the track. In this paper, we explore the use
of optimal control strategies to model the most efficient path
for a racing car to optimize its lap time around F1 circuits.
Specifically, we focus on one of the iconic circuits: Monza in
Italy.

Optimal control is a well-established field of research that
seeks to find the best control inputs for a system to achieve
a desired objective, subject to constraints. In F1 racing, the
objective for cars is to complete a lap in the shortest possible
time. However, the shortest path is not necessarily the optimal
path for minimizing lap time. Similarly, the minimum curva-
ture path, which minimizes the amount of steering required to
navigate the turns, is not optimal as it does not account for
the vehicle dynamics and track conditions [5]. To achieve the
fastest lap times, F1 cars need to maintain maximum velocity
while cornering, which requires a path that balances the trade-
off between minimizing distance traveled and maximizing
speed. The optimum path for an F1 car lies somewhere in
between, and finding this path is a challenging problem that
requires a deep understanding of optimal control, vehicle
dynamics, and track geometry [6]. In this paper, we address
this problem by developing a framework for using optimal

control strategies to generate the optimal racing line for F1
cars on the Monza (Temple of Speed) circuit.

Our approach takes into account the vehicle dynamics and
track conditions, and aims to find the path that allows the car
to achieve the highest possible speed while staying within the
track limits. By doing so, we aim to contribute to the broader
field of high-performance motor-sports and help teams and
drivers improve their lap times and race performance.

II. LITERATURE REVIEW

The use of minimum curvature trajectories involves finding
the path with the smallest possible curvature, which minimizes
the amount of time it takes to complete a turn. The approach
has been extensively studied in recent years, with researchers
proposing various numerical methods and optimization al-
gorithms for computing the minimum curvature trajectory.
Papers such as Siegler et al.’s ’Lap Time Simulation for
Racing Car Design,’ [1] Müller et al.’s ”Optimisation of the
Driving Line on a Race Track,” [2] and Casanova, D.’s ”On
minimum time vehicle manoeuvring: the theoretical optimal
lap” [3] provide detailed insights into the vehicle dynamics
models, optimization algorithms, and numerical methods used
in lap time optimization using minimum curvature trajectories.
These studies demonstrate the effectiveness of the minimum
curvature trajectory approach for lap time optimization and
provide valuable insights into the development of lap time
optimization tools using various software platforms.

Summarising our understandings, the minimum curvature
trajectory approach is a popular technique for lap time op-
timization in motor-sports due to its numerous merits. The
approach reduces the time taken to complete a turn, resulting
in faster lap times. It can be seamlessly integrated with various
optimization algorithms and numerical methods, providing
greater flexibility in the design of the lap time optimization
tool. To address the demerits of this approach, we will take a
comprehensive approach in our project. We will try to take
into consideration the limitations of the approach, such as
the assumption that the vehicle will travel in a straight line
between two turns. Overall, the minimum curvature trajectory
approach is a promising technique for lap time optimization,
and by taking a careful and comprehensive approach, we can
effectively leverage its merits while mitigating its demerits in
our project.



III. METHODOLOGY

A. Geometric Problem

The primary objective of a race driver is to achieve the
fastest lap time. To accomplish this goal, there are two main
strategies that can be pursued: minimizing the distance traveled
or maximizing the speed attained. However, the maximum
speed that can be achieved by a race car while navigating
a curve with a certain radius is limited by the maximum
centripetal force that can be generated by the tires. There-
fore, to minimize lap time, it is essential for the driver to
strike a balance between minimizing the distance traveled
and maximizing the speed attained while staying within the
limits of the car’s centripetal force capabilities. This requires a
deep understanding of the physical constraints of the vehicle,
the geometry of the track, and optimal control strategies to
determine the most efficient racing line. Now we give the
derivation of the Quadratic problem which is inspired from
[4].

The maximum speed vmax achievable while negotiating a
curve of radius ρ is limited by the maximum centripetal force
developed by the tires which can be estimated in equation (1)
where m represents the vehicle’s mass, µ the tire–road friction
coefficient, Fa the aerodynamic down-force.

may,max = m
v2max

ρ
= µ (mg + Fa)

⇒ vmax =

√
µρ

(
g +

Fa

m

) (1)

To further understand, please refer Fig. (1). The minimum
space trajectory, labeled as (a), follows the path with the lowest
curvature radius, which allows the car to cover the shortest
distance. In contrast, the minimum curvature trajectory, labeled
as (b), is characterized by the largest curvature radius and
enables the car to negotiate the curve at the highest possible
speed. However, this trajectory requires a significant increase
in distance traveled. Finding the optimal racing line for mini-
mizing lap time requires striking a balance between trajectory
(a) and (b), taking into account the vehicle’s dynamics.

Fig. 1. Shortest path (a) and Lowest curvature (b). Taken from [4].

In this report, the approach followed involves an initial
analysis of the pure geometrical problem. Algorithms are
developed to identify the optimal path and trajectory with the
lowest curvature based on the track center-line trajectory and
road width. Subsequently, a simplified vehicle dynamics model
is employed to solve a trajectory optimization problem aimed
at identifying the necessary controls for the optimal trajectory.

The algorithm developed to identify minimum curvature
trajectory solves a constrained minimization problem as the
identified solution has to be within track limits. To solve
the minimization problem, the track is divided into several
segments as shown in Fig. (2) and at the end of each segment
the position of a given point on the track is identified using the
following equation where αi being a parameter that identifies
the position of point

−→
P i along the track width. The range of

variation of α is [0:1].

−→
P i = xi

−→
i + yi

−→
j

= [xr,i + αi (xl,i − xr,i)]
−→
i + [yr,i + αi (yl,i − yr,i)]

−→
j

= [xr,i + αi∆xi]
−→
i + [yr,i + αi∆yi]

−→
j

(2)

Fig. 2. Trajectory Segmentation. Taken from [4].

The resulting trajectory will be obtained by linking, through
linear segments all the

−→
P i points identified.

B. Minimum Curvature Trajectory

In Formula One racing, the minimum curvature trajectory
refers to the path a car takes through a turn that minimizes
the distance traveled and maximizes the speed while actively
maintaining vehicle control.

To follow the minimum curvature trajectory, the driver will
typically approach the turn from the outside edge of the track
and aim to hit the apex, or the point where the turn is at its
tightest, with the inside wheels of the car. The driver will then
accelerate out of the turn, using the full width of the track to
maintain momentum.

Initially, the search for the minimum curvature path was
approached similarly to how the shortest space trajectory is
determined, which involved approximating the trajectory with
a series of straight-line segments. However, this method proved
to be inadequate as simulations showed significant errors in
the solution due to discontinuities in slope between adjacent



segments. To overcome this issue, adjacent points were instead
connected using closed natural cubic splines. This approach
ensured that the trajectory was determined within a single
segment, thereby avoiding any curvature discontinuities that
could lead to inaccuracies in the final solution.

xi(t) = ai,x + bi,xt+ ci,xt
2 + di,xt

3

yi(t) = ai,y + bi,yt+ ci,yt
2 + di,yt

3

t(s) =
s−si,0
dsi

(3)

Equation (3) represents the trajectory within a single track
segment as a third-order polynomial function of t. Here, t is
a variable that represents the curvilinear abscissa normalized
to the length of the ith track segment and s is curvilinear
distance.
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(4)
If all the segments of the track center-line have the same

length ds∗, equation (4) simplifies as follows:

(
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)
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ds∗
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] (5)

The track curvature minimization can thus be obtained by
considering the quantity Γ.

Γ2 =

n∑
i=1

[(
d2x(t)

dt2

)2

+

(
d2y(t)

dt2

)2
]

(6)

C. Formulation of Quadratic Problem

Closed natural cubic splines are a type of interpolation
method used in minimum curvature problems to construct
the minimum curvature trajectory. The cubic spline algorithm
constructs a smooth curve by connecting several cubic polyno-
mials together at data points. In a minimum curvature problem,
the data points represent the key locations on the track, such
as the center of turns and straight sections. The closed natural
cubic spline approach ensures that the spline is continuous
and has a continuous first and second derivative at all data
points. This continuity ensures that the resulting trajectory
is smooth and minimizes the overall curvature of the path,
resulting in a faster lap time. The use of closed natural cubic
splines has been shown to be effective in minimizing lap times
and improving the performance of race cars in motor-sports
applications.

The second derivative for a closed natural cubic spline,
considering variable x computed at t = 0, can be expressed as

d2x(t)

dt2

∣∣∣∣
t=0

= [D]x (7)

Here, [D] is a constant matrix which represents the vector
of the components of each point of the trajectory. Considering
equation (2), the vector x̄ linearly depends on the independent
variable vector ᾱ:

x = xr + [dx]α (8)

Thus, equation (7) can be written as,

(
d2x(t)

dtt2

∣∣∣∣
t=0

)2

= αT
(
[dx]T[D]T[D][dx]

)
α

+ 2
(
xT
r [D]T[D][dx]

)
α+ xT

r [D]T[D]xr

(9)

A similar expression can be obtained for the y coordinate
so that Γ2 can be expressed as a quadratic form of the
independent variable vector ᾱ :

Γ2 = αT [HΓ]α+ {BΓ}α+ cost (10)

D. Trajectory Optimization as an NLP

We are now going to present the Nonlinear Program for-
mulation of our problem to get the optimized trajectory for
controls considering vehicle dynamics and track constraint.
We used IPOPT NLP solver to solve the problem. The setup
below gives a brief idea about the optimal control problem.

min
x1:N ,u1:N−1

N−1∑
i=1

[
1

2
(xi − xrefi )TQ(xi − xrefi ) +

1

2
uTi Rui

]
(11)

+
1

2
(xN − xrefN )TQf (xN − xrefN ) (12)

s.t. x1 = xIC (13)
xN = xgoal (14)
frk4(xi, xi+1, ui, dt) = 0 i ∈ [1, N − 1] (15)
Umin ≤ ui ≤ Umax i ∈ [1, N − 1] (16)
Xmin ≤ xi ≤ Xmax i ∈ [1, N ] (17)

Where xIC and xgoal is taken from the previous optimum
achieved in geometric QP, and frk4(xi, xi+1, ui) is the RK4
integration of the dynamics.

1) Dynamics bicycle model: We used a single track model
for the vehicle dynamics. Below are the corresponding differ-
ential equations:



TABLE I
MODEL PARAMETERS

Name Description Unit Value
(ẋ,ẏ) Vehicle’s velocity along vehicle’s frame m/s State
(X,Y) Vehicle’s co-ordinates in world frame m State
(ψ,ψ̇) Body yaw angle, angular speed rad,rad/s State
δ Front wheel’s angle rad Input
F Total input force N Input
M Vehicle Mass kg 1000
lr Length from rear tire to center of mass m 0.82
lf Length from front tire to center of mass m 1.18
Cα Cornering stiffness of each tire N 20000
Iz Yaw inertia kg.m2 3004.5
f Rolling resistance co-efficient N/A 0.025
delT Simulation time step sec 0.01

Fig. 3. Optimal Raceline using Geometric QP

Ẋ = ẋ cosψ − ẏ sinψ (18)

Ẏ = ẋ sinψ + ẏ cosψ (19)

ψ̇ = ψ̇ (20)

ÿ = −ψ̇ẋ+
2Cα

m

(
cos δ

(
δ − ẏ + lf ψ̇

ẋ

)
− ẏ − lrψ̇

ẋ

)
(21)

ẍ = ψ̇ẏ +
1

m
(F − fmg) (22)

ψ̈ =
2lfCα

Iz

(
δ − ẏ + lf ψ̇

ẋ

)
− 2lrCα

Iz

(
− ẏ − lrψ̇

ẋ

)
(23)

where, the state vector X = [x, y, ψ, ẋ, ẏ, ˙psi] and the
controls U are F (Force) and δ (steering angle). Umin =
[−20000,−π/6] and Umax = [16000, π/6]. Xmin and Xmax

is track limit constraint . The model parameters are explained
in the Table: I

IV. RESULTS

The objective of this study was to identify the most efficient
trajectory for a given track, using minimum curvature opti-
mization techniques. This section presents the data collected
during the experimentation, as well as the results of the
analysis performed to validate our findings.

A. Quadratic Problem results

The results for QP problem are shown in Fig. (3) and
Fig. (4). Curvature plot shows us zero curvature in steps
corresponding to straights in the track. An inference drawn
from the results of the Quadratic problem is that traditional
optimization techniques, such as quadratic programming, may
not always be suitable for trajectory optimization in motor-
sports applications due to limitations such as discretization
errors. The study found that the discretization of the trajec-
tory resulted in the path touching the apex, which can lead
to performance issues during actual racing scenarios. These
findings suggest that more advanced optimization techniques



and a nuanced understanding of the complex factors that
affect trajectory optimization in motor-sports are necessary to
improve lap times and enhance the performance of race cars.
Overall, this study highlights the need for continued research
into trajectory optimization techniques and their applications
in motor-sports.

Fig. 4. Curvature Plot of Raceline obtained from Geometric QP

B. Trajectory Optimization NLP

The results derived from DIRCOL suggest that the use
of direct collocation techniques can effectively optimize the
trajectory of a Formula-style car. The DIRCOL algorithm
was able to develop a smooth and continuous trajectory that
minimized lap times while satisfying the constraints of the
problem. The optimized trajectory also resulted in consistent
velocity and acceleration profiles, which could enhance the
performance of the car on the track. These findings suggest
that direct collocation techniques have potential for improving
lap times and enhancing the overall performance of race cars.
However, further research is necessary to explore the full
capabilities and limitations of these techniques in the context
of motor-sports applications.

Fig. (5) in the present study demonstrates the discrepancy
in distance between the trajectory generated by Quadratic
Programming (QP) and the trajectory solved by Nonlinear
Programming (NLP), which were found to be fairly close.
However, it is noteworthy that the NLP method accounted for
both the dynamics of the car and the conditions of the track,
indicating its superiority over the QP approach in optimizing
the trajectory of Formula-style cars.

V. CONCLUSION

In conclusion, the results of this project demonstrate the
effectiveness of closed natural cubic splines for developing
a minimum curvature trajectory that improves lap times and
enhances the performance of a Formula-style car. The opti-
mized trajectory significantly reduces the overall curvature of
the path, resulting in a smoother ride and faster lap times. This
study has important implications for motor-sports applications
and suggests that minimum curvature optimization techniques
can be used to improve lap times and performance in Formula-
style car racing.

Fig. 5. Distance Error between Qp and NLP solved trajectory

However, the study has some limitations, such as the need
for accurate data collection and the potential for local minima
in the optimization process. Future research could address
these limitations by exploring the use of other optimization
techniques, such as genetic algorithms, to develop more accu-
rate and efficient minimum curvature trajectories. Additionally,
future studies could examine the effects of other variables,
such as tire pressure, on lap times and performance, to further
refine the trajectory optimization process. Overall, the results
of this project provide a valuable foundation for future research
in the field of motors-ports and trajectory optimization.

VI. APPENDIX

Project Repository : Repo Link
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